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It has been predicted and experimentally demonstrated that by injecting squeezed light into an
optomechanical device, it is possible to enhance the precision of a position measurement. Here, we present
a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear
medium. Counterintuitively, the enhancement of the signal-to-noise ratio works by deamplifying precisely
the quadrature that is sensitive to the mechanical motion without losing quantum information. This
enhancement works for systems with a weak optomechanical coupling and/or strong mechanical damping.
This can allow for larger mechanical bandwidth of quantum-limited detectors based on optomechanical
devices. Our approach can be straightforwardly extended to quantum nondemolition qubit detection.
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Recent progress in cavity optomechanics [1,2] has been
so exceptional that the precision of a position measurement
has been pushed to the limit set by the principles of
quantum mechanics, the so-called standard quantum limit
(SQL) [3–5]. A measurement precision close to the SQL
has been demonstrated in optomechanical devices with
cavities both in the optical [6–8] and in the microwave [9]
domain. Optomechanical position detection is not only of
fundamental interest but finds also application in accel-
eration [10,11], magnetic field [12,13], and force detectors
[14,15]. Thus, an important goal for the future is to develop
new techniques to enhance its precision on different
optomechanical platforms. Seminal efforts have focused
on gravitational wave detection in optomechanical inter-
ferometers [16–20]. The standard route to enhance the
detection precision consists in injecting squeezed light
into the interferometer [16,17,21]. This technique has
recently been demonstrated in the Laser Interferometer
Gravitational Wave Observatory (LIGO) [22] and in a
cavity optomechanics setup [23]. Externally generated
squeezed light could also find application in quantum
nondemolition (QND) qubit state detection [24,25].
Injection losses are a major hindrance of the effectiveness
of externally generated squeezed light. This has motivated a
number of proposals aiming to create the squeezing directly
inside the cavity. Intracavity squeezing could be generated
by a Kerr medium [18,20,21,26–28] by the dissipative
optomechanical interaction [29–31] in a multimode opto-
mechanical system [32] or, potentially, by exploiting the
ponderomotive squeezing [33–35].
In this Letter, we propose a new pathway to precision

enhancement in optomechanical detection. In our approach,

a nonlinear cavity is operated as a phase-sensitive parametric
amplifier, as shown in Fig. 1. It amplifies a seed laser beam
and its intensity fluctuations. Simultaneously, it deamplifies
the phase quadrature where the mechanical vibrations are
imprinted. At first sight, it might appear counterintuitive that
deamplification can improve a (quantum) measurement.
Here, we suggest that it is worth deamplifying a signal if the
noise is suppressed by a larger factor, thus, obtaining a net
enhancement of the signal-to-noise ratio. Indeed, our analy-
sis shows that for optomechanical position detection, a
deamplification of the phase quadrature induces only a
limited suppression of the signal but simultaneously can
strongly suppress themeasurement noise. Our scheme could

FIG. 1 (color online). Setup for parametrically amplified
optomechanical position measurement. A whispering gallery
mode resonator (WGMR) with a χð2Þ nonlinearity is operated
as a degenerate parametric amplifier. The pump laser (frequency
ωp) drives the signal mode at its parametric resonance but is
detuned compared to the pump mode resonance. An additional
laser beam with the appropriate phase and frequency ωp=2 (seed
laser) is amplified in the WGMR. The signal mode resonance
depends on the amplitude hx̂i of a mechanical mode deformation.
Thus, the mechanical vibrations are imprinted in the seed laser
phase shift detected in a homodyne setup.

PRL 115, 243603 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

11 DECEMBER 2015

0031-9007=15=115(24)=243603(6) 243603-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.243603
http://dx.doi.org/10.1103/PhysRevLett.115.243603
http://dx.doi.org/10.1103/PhysRevLett.115.243603
http://dx.doi.org/10.1103/PhysRevLett.115.243603


be implemented using a crystallinewhispering gallerymode
resonator [36]. Such devices offer a well-established plat-
form for optomechanics [1,2,37,38]. Resonators with an
optical χð2Þ nonlinearity can be operated as parametric
amplifiers in the quantum regime [39,40]. The exciting
perspective of an interplay of optical and optomechanical
nonlinearities has already inspired several theoretical inves-
tigations [41–44]. Alternative implementations of our
scheme include optomechanical crystals [45] when made
out of nonlinear materials such as AlN [46] and a Josephson
parametric amplifier [47] coupled to a mechanical mem-
brane or a qubit.
We consider a degenerate parametric amplifier (DPA)

described by the standard linearized Hamiltonian [48]

H ¼ iℏn̄1=2p νðâ†s â†s − âsâsÞ=2:
The signal mode (annihilation operator âs and decay rate
κs) is driven parametrically at its parametric resonance via
an auxiliary pump mode, n̄p denotes the number of photons
circulating in the pump mode, and ν is the single-photon
χð2Þ nonlinearity. The parametric amplifier is characterized
by its pump parameter σ,

σ2 ¼ n̄p=n̄
ðthrÞ
p ; n̄ðthrÞp ¼

�
κs
2ν

�
2

: ð1Þ

The signal mode reaches the threshold of self-sustained
(optical parametric) oscillations when the photon number
circulating in the pump mode equals n̄ðthrÞp , corresponding
to the pump parameter σ ¼ 1. Below threshold, the cavity
behaves as a phase-sensitive amplifier as discussed above.
We want to measure the displacement x̂ of a mechanical

resonator with eigenfrequency Ω, effective mass m, and
decay rate Γ. The mechanical resonance could be internal to
the optical resonator (e.g., a breathing mode) or refer to the
vibrations of an external nano-object coupled evanescently.
A displacement x̂ induces a shift −Gx̂ of the signal mode
frequency described by a Hamiltonian ĤOM ¼ −ℏGâ†s âsx̂
[1]. We measure the displacement x̂ by extracting the output
signal phase of a seed drive injected at the cavity resonance,
where it is most sensitive to the jittering of the optical
resonance induced by the mechanical vibrations. When the
seed laser injects a large number n̄s of circulating photons
into the signal mode (below, we specify this condition more
precisely), we can linearize the optomechanical interaction
[1]. Then the mechanical vibrations couple to the optical
field quadrature X̂ ¼ ðâs þ â†s − 2

ffiffiffiffiffi
ns

p Þ= ffiffiffi
2

p
describing the

amplitude fluctuations: ĤOM ¼ −ℏG
ffiffiffiffiffiffiffi
2n̄s

p
X̂ x̂. We arrive at

the Langevin equations for the optical signal mode quad-
ratures X̂ (amplitude) and Ŷ (phase):

_̂X ¼ −ð1 − σÞκsX̂=2þ
ffiffiffiffi
κs

p
X̂ðinÞ;

_̂Y ¼ −ð1þ σÞκsŶ=2þ
ffiffiffiffiffiffiffi
2n̄s

p
Gx̂þ ffiffiffiffi

κs
p

ŶðinÞ; ð2Þ

where Ŷ ¼ iðâ†s − âsÞ=
ffiffiffi
2

p
, and X̂ðinÞ and ŶðinÞ are the

standard vacuum input fields (the quantum fluctuations of
the laser beam at the input) [48]. Here, we neglect intrinsic
losses and the coupling to the pump mode fluctuations. We
go beyond this ideal description below. As seen in Eq. (2),
the presence of the nonlinear medium and the pump drive
manifests itself in the deamplification of the phase quad-
rature and a corresponding amplification of the amplitude
quadrature. In the limit σ → 0, we recover the Langevin
equations for a cavity measuring the mechanical displace-
ment in the standard approach without squeezing.
To improve a measurement by deamplification might not

sound promising. The measurement noise will be deam-
plified, but one could reasonably expect that this effect will
be offset by the deamplification of the signal. Indeed, it is
true that the response of the cavity to both the vacuum noise
and the mechanical vibrations is decreased by the same
factor. From Eq. (2), the intracavity phase quadrature in
frequency space is

Ŷ½ω� ¼ χYðωÞð
ffiffiffiffiffiffiffi
2n̄s

p
Gx̂½ω� þ ffiffiffiffi

κs
p

ŶðinÞ½ω�Þ ð3Þ
with the intracavity susceptibility χY ¼ ½−iω þ
ð1þ σÞκs=2�−1. We note in passing that the largest possible
suppression, a factor of 2, occurs in the limit ω → 0 and
σ → 1. This is the well-known 3 dB limit of intracavity
squeezing [49]. However, the suppression of the back-
ground noise and of the mechanical signal is different
outside the cavity. From the input-output relation ŶðoutÞ ¼
ŶðinÞ − ffiffiffiffi

κs
p

Ŷ, we find

ŶðoutÞ½ω� ¼ ½1 − κsχYðωÞ�ŶðinÞ½ω� −
ffiffiffiffiffiffiffiffiffiffiffi
2κsn̄s

p
GχYðωÞx̂½ω�:

ð4Þ
From this formula, we see that the response of the phase
quadrature of the transmitted signal to the mechanical
vibrations is still governed by the intracavity susceptibility
and is, thus, subject to the 3 dB limit of squeezing. In
contrast, the output phase noise is squeezed below the 3 dB
limit by the destructive interference between the reflected
input noise and the response of the cavity to that noise.
Indeed, it is well known that the output noise squeezing can
be arbitrarily large [21]. Thus,we expect an overall enhance-
ment of the measurement precision accompanied by deam-
plification. This behavior is displayed by the symmetrized
spectral density of the output phase quadrature

S̄YYðωÞ ¼
Z

∞

−∞

dt
2
eiωthfŶðoutÞðtÞ; ŶðoutÞð0Þgi; ð5Þ

i.e., the quantitymeasured in the homodyne setup; see Fig. 2.
We briefly comment on the similarities between our

proposal and other schemes where interference effects
enhance the optomechanical position detection. In dissi-
pative optomechanical setups [29,30], the interference
between the light impinging on the cavity and the light
filtered by the cavity enhances the signal intensity rather
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than reducing the measurement noise. Closer to our
settings, a nonlinear cavity operated close to its static
bistability [18,20,21,26–28] is formally equivalent to an
effectively detuned DPA [27]. Because of the effective
detuning, the amplitude and phase fluctuations become
correlated. An important consequence of such correlations
is that the SQL is reached only away from the mechanical
resonance (whereas for us, it is reached precisely at
resonance) [27]. For such a quantum-limited measurement,
one should measure the quadrature whose homodyne signal
is amplified by the cavity [27]. If one does not aim for a
quantum-limited measurement, one can also measure the
deamplified quadrature [20]. This leads to an improvement
of the signal-to-noise ratio similar to the one observed here.
However, this is accompanied by a loss of quantum
efficiency because most of the information regarding the
mechanical vibrations is imprinted on the other amplified
quadrature, and, thus, the SQL would not be reached. Most
important, there is not such a trade-off in our scheme where
all information is imprinted on the deamplified quadrature.
In order to quantify the net enhancement of the

measurement precision, it is convenient to define the

measured noise referred back to the input S̄ðmeasÞ
xx ¼

S̄YY=ð2κsn̄sG2jχY j2Þ. Then, from Eq. (4) the measured

noise takes the form S̄ðmeasÞ
xx ðωÞ ¼ S̄xxðωÞ þ S̄ðaddÞxx where

S̄xxðωÞ describes the symmetrized mechanical noise in the

absence of optomechanical backaction, whereas S̄ðaddÞxx is
the noise added during the measurement. We are interested
in the noise at frequency Ω where the mechanical spectrum
is peaked. Since there is a typical number of circulating
photons (specific of the device) that can be tolerated
without inducing strong heating effects, we use as a figure

of merit of our measurement scheme the added noise

S̄ðaddÞxx ðΩÞ for a fixed effective number of circulating
photons, n̄ ¼ n̄s þ n̄p=η. The device-dependent coefficient
η reflects the different impact on heating of signal and
pump photons. In first approximation, one can identify η
with the ratio of the energy quanta of the signal and pump
modes, η ≈ 1=2. Below, we show that internally generated
optical squeezing can strongly enhance the precision when

Cthr ≡ g20κs
ηΓν2

¼ 4g20n̄
ðthrÞ
p

ηΓκs
≪ 1: ð6Þ

Here, g0 ¼ G=xZPF is the optical frequency shift when the
oscillator is displaced by the quantum length scale xZPF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mΩ

p
[1]. The parameter Cthr, which we refer to as

threshold cooperativity, is the optomechanical cooperativ-

ity if n̄s ¼ n̄ðthrÞp =η photons were in the signal mode. It
quantifies the ratio of optomechanical and nonlinear
coupling. Notice that in the absence of squeezing, the
SQL is reached for the optomechanical cooperativity C ¼
1=4 [1]. Thus, if Cthr ≪ 1, it is not possible to achieve a
precision close to the SQL by injecting all available

photons n̄s ∼ n̄ðthrÞp =η directly into the signal mode.
Instead, one can enhance the measurement precision by
injecting part of the photons into the pump mode to
generate squeezing, as shown below.

We now calculate the added noise S̄ðaddÞxx . We distinguish
between two different contributions [3–5]: the so-called

imprecision noise S̄ðimpÞ
xx ðωÞ and the backaction noise

S̄ðbackÞxx ðωÞ. The former is due to the shot noise phase
fluctuations. The latter is the additional mechanical noise
induced by the backaction of the light onto the mechanics. It

can be expressed as S̄ðbackÞxx ðωÞ ¼ jχMðωÞj2S̄FFðωÞ in terms
of the mechanical susceptibility χMðωÞ ¼ m−1ðΩ2 − ω2 þ
iωΓÞ−1 and the noise spectrum S̄FF of the radiation pressure
force F̂ ¼ ffiffiffiffiffiffiffi

2n̄s
p

ℏGX̂. We note in passing that our meas-
urement scheme could also find application in the detection
of any degree of freedom coupled dispersively to the cavity,
e.g., a qubit [4]. From Eq. (2), we can readily derive the

identity S̄ðimpÞ
xx ðωÞS̄FFðωÞ ¼ ℏ2=4 valid for all values of σ. It

is well known that when this equality holds, both the
position detection of resonant vibrations and the QND qubit
state detection are quantum limited [3–5]. We compute the

overall added noise S̄ðaddÞxx ¼ S̄ðimpÞ
xx þ S̄ðbackÞxx from Eq. (2),

S̄ðimpÞ
xx

S̄SQLxx
¼ ð1 − σÞ2 þ 4Ω2=κ2s

8Cthr½ηn̄=nðthrÞp − σ2�
;

S̄ðbackÞxx

S̄SQLxx
¼ S̄SQLxx

4S̄ðimpÞ
xx

: ð7Þ

Here, we have introduced theminimumadded noise allowed
by the SQL S̄SQLxx ¼ ℏ=mΩΓ [3–5]. Figure 3(a) shows the
added noise Eq. (7) as a function of the circulating photon
number n̄ and the pump parameter σ. For σ ¼ 0 (no

FIG. 2 (color online). Output phase noise S̄ðoutÞYY as a function of
frequency. Comparison between the phase noise in the presence
and in the absence of the pump drive for the same number of
circulating photons n̄s. In the presence of the pump laser (pump
parameter σ ¼ 0.6), the background noise inside the amplifier
bandwidth is squeezed below the shot noise level by more than
3 dB. The signal amplitude is also reduced, but in this case, the
reduction is bounded by the 3 dB limit. The number of circulating
photons n̄s is chosen to yield the minimum added noise allowed
by the SQL, for σ ¼ 0.6. Thus, the imprecision noise and the
backaction noise (shown in the zoom) have the same intensity at
the mechanical resonator eigenfrequency Ω. The remaining
parameters are Ω ¼ 0.2κs, Γ ¼ 10−3κs, kBT=ℏΩ ¼ 1.
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circulating photons in the pumpmode), we recover the result
for standard optomechanical detection. The SQL is reached

for S̄ðaddÞxx ¼ 2S̄ðimpÞ
xx ¼ 2S̄ðbackÞxx ¼ S̄SQLxx [3–5]; see, also, the

zoom in Fig. 2. From Eq. (7), we find the required photon
number

n̄SQLðσÞ ¼ n̄ðthrÞp

η

�ð1 − σÞ2 þ 4Ω2=κ2s
4Cthr

þ σ2
�
: ð8Þ

It is shown as a yellow solid line in Fig. 3(a). Byminimizing
n̄SQLðσÞ as a function of σ, we find the minimal number of
circulating photons n̄� necessary to reach the SQL and the
corresponding optimal pump parameter σ�,

n̄� ¼ n̄SQLðσ�Þ; σ� ¼ ð1þ 4CthrÞ−1: ð9Þ
Compared to the standard scheme,where the SQL is reached
for n̄SQLstandard ¼ n̄SQLðσ ¼ 0Þ circulating photons, the required
number of photons is suppressed by a factor of

n̄SQLstandard=n̄
� ¼ 1þ 4Ω2=κ2s

1 − ð4Cthr þ 1Þ−1 þ 4Ω2=κ2s
: ð10Þ

The suppression factor increases monotonically with
increasing optical nonlinearity (decreasing threshold coop-
erativity Cthr) and reaches the asymptotic value κ2s=4Ω2 for
large optical nonlinearities (Cthr ≪ 1) in the bad-cavity limit
Ω ≪ κs. Our method is still useful even when it is not
possible to reach the SQL because the typical number of
circulating photons tolerated in the device is too small
(smaller than n̄�). In this case, the added noise remains larger
than S̄SQLxx , yet it can still be decreased by the squeezing. By

minimizing S̄ðaddÞxx in Eq. (7) as a function of σ for a fixed n̄
(smaller than n̄�), we find the optimal pump parameter

~σ¼B
2
−
�
B2

4
−

ηn̄

n̄ðthrÞp

�
1=2

; B¼1þ ηn̄

n̄ðthrÞp

þ4
Ω2

κ2s
: ð11Þ

It increases monotonically with the number of circulating
photons and reaches the value ~σ ¼ σ� for n̄ ¼ n̄�; see the
white dashed line in Fig. 3(a).
Next, we go beyond the simple description of an ideal

parametric amplifier taking into account intrinsic losses, the
radiation pressure coupling between the mechanics and the
pumpmode, and that signal photons can be up-converted by
the χð2Þ interaction. In this scenario, the vibrations are
imprinted also in the pump output. Thus, the backaction
of the pump field gives rise to additional mechanical noise.
Moreover, the up-converted photons can decay via the pump
mode decreasing the measurement precision. A similar
increase of the measurement imprecision occurs in the
presence of material absorption. A full analysis of these
effects is provided in the SupplementalMaterial [50] and can
be summarized as follows: (i) the additional backaction is a
small fraction of the minimal added noise S̄SQLxx for Cthr ≪ 1
(the regime of interest in this work); (ii) the imprecision

noise is substantially increased only for loss rates κðlossÞs ,

κðlossÞs ≳ Ω2=κs. The overall loss rate takes the form

κðlossÞs ¼ κðabsÞs þ 4ν2n̄sκp=ð4Δ2
p þ κ2pÞ; ð12Þ

where κðabsÞs is the rate of material absorption, while κp and
Δp are the pumpmode decay rate and detuning, respectively.

Thus, for a typical signal photon number n̄s ∼ nðthrÞp , a
detuning of a few linewidths is enough to suppress the
additional decay via the pump mode. This allows a deam-
plification-induced enhancement of the measurement pre-
cision in a broad range of threshold cooperativities Cthr; see
Fig. 3(b).
The inevitable increase of the intensity fluctuations in the

proposed measurement scheme represents a potential con-
tradiction of the assumption of small fluctuations inherent
to the linearized Langevin equations (2). However, it can be
shown that the enhanced fluctuations remain compatible
with the linearization, provided that the single-photon
nonlinearity ν is not too large, ν ≪ Ω [50].
The regime of small threshold cooperativities Cthr ≪ 1 is

realized in state-of-the-art lithium-niobate microdisks
[39,40,51]. These devices have breathing modes with
eigenfrequencies Ω in the MHz range. Typical single-
photon optomechanical couplings are in the sub-Hz range,
whereas single-photon optical nonlinearities ν are in the
kHz range. Thus, the regime Cthr ≪ 1 is compatible with
the bad-cavity limit even for disks with large mechanical
quality factors. Moreover, the nonlinear corrections to the
Langevin equations (2) will be small.

FIG. 3 (color online). (a) Added noise at the mechanical
frequency as a function of the total number of circulating photons
n̄ ¼ n̄s þ n̄p=η and the pump parameter σ, for Cthr ¼ 0.1. The

coordinates ðηn̄=n̄ðthrÞp ; σÞ where the added noise equals the SQL
are indicated by the yellow solid line; see Eq. (8). For n̄ < n̄�, the
added noise is always larger than the SQL. In this case, the
minimum noise for a fixed n̄ is realized on the white dashed line,
where the pump parameter ~σ is given by Eq. (11). (b) Added noise

as a function of the cooperativity Cthr, for n̄ ¼ n̄ðthrÞp =η: in the ideal
case with squeezing (κðabsÞ ¼ 0, jΔpj=κp → ∞), in the presence
of losses, pump backaction, and squeezing (κðabsÞ ¼ Ω2=κs,
−Δp=κp → 5), and in the absence of squeezing and losses
(σ ¼ 0). In both panels, we have chosen κs=Ω ¼ 10. In the right
panel, we have chosen η ¼ 1=2, κs ¼ κp, and equal couplings of
the mechanics to the pump and the signal modes.
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Our scheme could also find application in feedback cool-
ingbasedonoptomechanical position detection [52].Cooling
down to the mechanical ground state places much more
stringent demands on the measurement imprecision than the

SQL [8], S̄ðimpÞ
xx ≲ S̄SQLxx =n̄ðthÞ, where n̄ðthÞ is the initial number

of thermal phonons. This requires circulating photon num-
bers enlargedbya factor n̄ðthÞ, such that the reduction afforded
by our squeezing scheme becomes even more relevant.
In conclusion, we have shown that the precision of

optomechanical position detection can be strongly enhanced
by deamplification without loss of quantum efficiency in a
monolithic on-chip solution. Our method could pave the
way for the quantum-limited position detection of mechani-
cal resonators with larger decay rates. This would allow
faster detection of forces yielding an increase of the
bandwidth of quantum-limited detectors based on optome-
chanical devices [2]. A natural extension of our scheme
could find application in QND qubit state detection.
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