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We investigate the time evolution of a charge qubit subject to quantum telegraph noise produced by a single
electronic defect level. We obtain results for the time evolution of the coherence that are strikingly different
from the usual case of a harmonic-oscillator bath �Gaussian noise�. When the coupling strength crosses a
certain temperature-dependent threshold, we observe coherence oscillations in the strong-coupling regime.
Moreover, we present the time evolution of the echo signal in a spin-echo experiment. Our analysis relies on
a numerical evaluation of the exact solution for the density matrix of the qubit.
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I. INTRODUCTION

The unavoidable coupling of any quantum system to a
noisy environment leads to decoherence. Understanding de-
coherence is interesting for fundamental reasons �the
quantum-classical crossover, the measurement problem, etc.�
and is essential for achieving the long dephasing times nec-
essary for building a quantum computer and other applica-
tions. The paradigmatic models in this field �Caldeira-
Leggett and spin-boson models1–3� usually consider a bath of
harmonic oscillators. In that case, the bath variable coupling
to the quantum system displays Gaussian-distributed fluctua-
tions. This feature affords considerable technical simplifica-
tions, while these models are faithful descriptions of real
environments like the vacuum electromagnetic field or the
harmonic crystal lattice. In other cases �such as electronic
Nyquist noise in a bulk metal�, these models represent very
good approximations. This is a consequence of the central
limit theorem applied to the sum of contributions from many
independent non-Gaussian noise sources. The approximation
finally breaks down when one couples strongly to a few
noise sources. This situation is becoming more prevalent
nowadays, as one studies the coherent dynamics of nano-
structures. The coherence times of solid-state qubits are often
determined by a few fluctuators.4–6

This challenge has given rise to a number of theoretical
studies of qubits subject to fluctuators producing telegraph
noise7–17 �and other non-Gaussian baths18–21�. The most
straightforward but realistic fully quantum-mechanical
model consists of a single level tunnel coupled to an electron
reservoir.22 Grishin et al.8 recently studied the long-time
limit of this model and derived the dephasing rate for a qubit
coupled to such a fluctuator. They found a striking non-
analytic dependence of the dephasing rate on the coupling
strength and temperature. In this Rapid Communication, we
take up the same model, which may reasonably be termed as
“quantum telegraph noise,” now asking for the full time de-
pendence. We find that in the strong-coupling regime �be-
yond a certain threshold� the monotonous decay of the qu-
bit’s coherence turns into temporal oscillations with
complete loss of coherence interspersed between coherence
revivals. We are able to fully include quantum fluctuations
by a numerical evaluation of the exact solution for the quan-

tum model, and we discuss the behavior at low temperatures.
We conclude by showing how to extend these calculations to
spin-echo experiments relevant for coherence control.

II. MODEL

We study a single spin-polarized impurity level �Fig. 1�a��
tunnel coupled to a �noninteracting� electron reservoir,

ĤB = �0d̂†d̂ + �
k

�tkĉk
†d̂ + H.c.� + �

k
�kĉk

†ĉk. �1�

Here d̂† creates an electron on the impurity level of energy
�0, and tk is the tunneling amplitude to the reservoir level k
of energy �k �we fix the reservoir’s chemical potential as �
=0�. Below, we always refer to the tunneling rate �

=2��k�tk�2���k−�0�. The fluctuating impurity charge Q̂
= d̂†d̂ couples to a qubit, and the full Hamiltonian is given by
��=1 and kB=1�

Ĥ =
	

2

̂z +

v
2
Q̂
̂z + ĤB, �2�

where 
̂x,z are the qubit Pauli operators, 	 is the qubit level
spacing, and v is the qubit-fluctuator coupling strength. The
coupling considered here leads only to pure dephasing and
not to energy relaxation in the qubit. This is a popular and
realistic model when discussing the decay of quantum infor-
mation during storage.
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FIG. 1. �Color online� �a� Schematic picture of the bistable fluc-
tuator: A localized level tunnel coupled to an electron reservoir. �b�
Time evolution of the visibility �D�t�� for classical telegraph noise
�top to bottom: v /�=0.2, 0.6,1.0,1.4,1.8,2.2,2.6,3.0�.

PHYSICAL REVIEW B 78, 201302�R� �2008�

RAPID COMMUNICATIONS

1098-0121/2008/78�20�/201302�4� ©2008 The American Physical Society201302-1

http://dx.doi.org/10.1103/PhysRevB.78.201302


We are interested in the full time dynamics of the reduced
density matrix �̂�t� of the qubit after preparing it in a super-
position state and switching on the interaction with the fluc-

tuator. Since the interaction Ĥint=
v
2Q̂
̂z commutes with the

qubit Hamiltonian, only the off-diagonal elements �ij are af-
fected �i , j� �↑ ,↓��, acquiring an additional coherence factor
D�t�,

�↑↓�t� = �↑↓�0�e−i	tD�t� . �3�

III. CLASSICAL TELEGRAPH NOISE

We first review the classical limit for the bath, where the
charge Q�t� is a stochastic process of the “telegraph noise”
type,23 which flips randomly between 0 and 1 �occurring
with equal probabilities� at a rate � /2. This corresponds pre-
cisely to the high-temperature limit of the quantum model
discussed here �see below�. For a given realization of Q�t�,
the Schrödinger equation yields a superposition of the qubit’s
eigenstates with a random contribution to the relative phase
��t�=−v	0

t dt�Q�t��. The noise average yields the coherence
D�t�= 
ei��t��. If the phase were Gaussian distributed then the
coherence would be determined by the variance of �:

ei��t��=ei
��t��−1/2 Var ��t�.

This is not true for classical telegraph noise, where the
exact result is found to be D�t�=e−i/2�v−i��t�cosh��t�
+ �� /2��sinh��t��, where �= 1

2
��2−v2, and �−1 is the charge

correlation time: 
�Q�t��Q�0��= 1
4e−��t� with �Q�t�=Q�t�

− 
Q�t��. The “interference contrast” of any observable sen-
sitive to the relative phase between the qubit’s levels is re-
duced by the factor �D�t��, which we will term the visibility.
Figure 1�b� shows �D�t�� for different couplings v. Coherence
oscillations appear when v
�, as � becomes imaginary.
These are qualitatively different from anything observed for
Gaussian noise, where D�t� cannot cross zero. The long-time
decay rate of �D�t�� is equal to 1

2 ��−��2−v2� if v�� and
� /2 if v
�.

IV. GENERAL EXACT SOLUTION

In the full quantum model �Eqs. �2� and �1�� the coher-
ence can generally24 be written as an overlap, D�t�
= 
�B

↓�t� ��B
↑�t�� of the two bath states ��B

↑�t�� and ��B
↓�t�� pro-

duced under the action of the qubit being in state �↑ � or �↓ �.
Then the coherence is

D�t� = 
ei�ĤB−�v/2�Q̂�te−i�ĤB+�v/2�Q̂�t� , �4�

where we average over the thermal state of the electron bath.
A variety of methods have been applied to calculate averages
of the form Eq. �4�, e.g., linked-cluster expansions or non-
equilibrium Keldysh path-integral techniques.8,25 Here we
implement a variant of a formula known from full-counting
statistics,26–29 which can be evaluated numerically efficiently.

Given arbitrary single-particle operators Â, B̂, and Ĉ, and

their second-quantized counterparts Â=�k,k�ĉk�
† Ak�kĉk, etc.,

the trace tr�eÂeB̂eĈ� over the many-body Hilbert space is

equal to det�1+eÂeB̂eĈ�. Applying this to Eq. �4�, we obtain

D�t� = det�1 − n̂ + ei�ĤB−�v/2�Q̂�te−i�ĤB+�v/2�Q̂�tn̂� . �5�

Here ĤB and Q̂ are the single-particle operators correspond-

ing to ĤB and Q̂, and n̂= f�ĤB� is the single-particle equilib-
rium density matrix, where f���= �exp����+1�−1 is the
Fermi-Dirac distribution. This formula takes into account ex-
actly the effects of quantum fluctuations �on top of thermal
ones� and the non-Markovian features in the fluctuator dy-
namics that develop for decreasing temperatures.

V. NUMERICAL EVALUATION

Our results for the time evolution of the visibility have
been obtained by direct numerically exact evaluation of Eq.
�5�. To this end, we employ a discretization with N equally
spaced energy levels �� �−W ,W� in a band W��. These

represent the single-particle energy eigenlevels of ĤB, for

which the matrix elements of Q̂ are equal to

Q̂�� =
1

��
�Im GR�� = ���Im GR�� = ��� . �6�

Here GR���= ��−�0+ i� /2�−1 is the impurity level’s retarded
Green’s function and �=N / �2W� is the level density. The
coherence is obtained by calculating the determinant of the
resulting N�N matrix �Eq. �5��. Good convergence is ob-
tained already for N on the order of 400 and W=20.

VI. RESULTS FOR THE VISIBILITY

In Fig. 2 we show the visibility for different couplings v.
For small coupling v /��1, the Gaussian approximation
works well. It can be obtained from Eq. �5� by writing

det�Â�=exp�tr�ln�Â��� and keeping only the terms up to the
order v2 in the exponent �see also Ref. 30�. Equivalently, one
may use D�t� that would be obtained for a harmonic-
oscillator bath whose two-point correlator is fixed to be


�Q̂�t��Q̂�0��. This approximation yields a long-time expo-
nential decay at a rate ��=v2 /4� for T�� �agreeing with
the results for classical telegraph noise, see above�. At T=0,
one obtains a power-law decay D�t�
 t−� with an exponent
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FIG. 2. �Color online� Time evolution of the visibility �D�t��
for different couplings v, for quantum telegraph noise acting on a
qubit at low temperatures �T /�=0.01�. The dashed lines show the
Gaussian approximation. From top to bottom: v /�=0.2,0.6,
1.0,1.4,1.8,2.2,2.6,3.0 �with �0=0�.
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�= �4 /�2��v /��2, arising from the orthogonality catastrophe.
For larger coupling strengths v /��1, the Gaussian approxi-
mation fails even qualitatively, indicating the non-Gaussian
nature of quantum telegraph noise.

The important feature is the occurrence of visibility oscil-
lations beyond a critical coupling strength vc. The visibility
vanishes at certain times and shows coherence revivals in
between. These features continue to exist in the full quantum
model. For T��, it agrees with the classical result, where
the threshold is vc

cl=�. In the quantum case �Fig. 2�, we
observe a transition to a nonmonotonous behavior as a pre-
cursor to the visibility oscillations, in contrast to the classical
limit discussed above. Moreover, zeros in the visibility de-
velop only at a larger coupling strength vc

q, which depends on
temperature T. Another notable feature is the nonmonoto-
nous evolution of peak heights for v /��2.7, unlike the clas-
sical case.

To illustrate these points, we have plotted the time evolu-
tion of D�t� �excluding a trivial phase factor� as a function of
the coupling strength v for various temperatures �Fig. 3�. At
high temperatures, visibility oscillations set in at vc

q /��1,
whereas for T→0 �Fig. 3�a�� the first zero crossing appears
only at vc

q /��2.7.

VII. TEMPERATURE DEPENDENCE
OF STRONG-COUPLING THRESHOLD

As explained above, the visibility oscillations are a genu-
inely non-Gaussian effect. We characterize the onset of the
strong-coupling regime by the temperature-dependent critical
coupling vc

q�T�, beyond which the zeros in D�t� appear. At a
fixed temperature T, the critical coupling strength vc

q and the
corresponding zero in D�t� at time t� are found numerically
by a bisection algorithm. The result is a “phase diagram”
showing the critical coupling vc

q as a function of T �Fig. 4�.
The curve vc

q�T� separates the v-T plane into two regions. At

high temperatures T the critical coupling vc
q converges to its

classical value vc
q→� �a slight offset in the plot is due to

limited numerical accuracy�. For low T, it increases and satu-
rates at a finite value, as D�t ;v ,T� is continuous in the limit
T→0, and D�t ;v ,T=0� still displays oscillations beyond
some threshold. This means the equilibrium quantum
Nyquist noise of the fluctuator is enough to observe visibility
oscillations, in contrast to the strong-coupling regime studied
in Ref. 31, where only the nonequilibrium shot noise of dis-
crete electrons could yield these effects.

VIII. SPIN ECHO

Finally, we investigate the time evolution of the density
matrix of the charge qubit in a spin-echo experiment com-
monly employed to filter out low-frequency fluctuations,
whose effect is canceled in such a procedure. Echo protocols
were first invented in nuclear magnetic resonance, but they
are by now standard in qubit experiments, particularly in the
solid state, where they are used to fight 1 / f noise.32 At the
initial time t�=0, the qubit is prepared in a superposition of
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its two eigenstates ���t0��=1 /�2��↑ �+ �↓ ��. Then we let
the qubit evolve according to Eq. �2� up to a time t�= t /2, at
which we perform a �-pulse ei�
̂x/2 on the qubit before
evolving up to time t. Defining Û�=exp�−i�ĤB

�vQ̂ /2�t /2�, we find the qubit’s final density matrix to be
�in analogy to Eq. �3�� Decho�t�= 
Û−

†Û+
†Û−Û+�. As before, we

can rewrite this as a determinant in the single-particle Hilbert
space,

Decho�t� = det�1 − n̂ + Û−
†Û+

†Û−Û+n̂� , �7�

where Û� is the single-particle evolution operator. In Fig. 5
we compare the echo signal with the free evolution. At low
temperatures, the fluctuations are purely quantum in origin,
yielding a relatively lower weight for small frequencies and
thus a decrease in the effectiveness of the spin-echo
procedure.

IX. CONCLUSION

In conclusion, we have studied the decoherence of a qubit
subject to quantum telegraph noise. We have calculated the

time evolution of the coherence and found a strong-coupling
regime with an oscillatory time dependence of the coherence
that cannot be mimicked by any Gaussian noise source. We
have characterized this regime via the appearance of the first
zero in the time evolution of the coherence and summarized
the result in a “phase diagram.” Moreover, we have pre-
sented the time evolution of the echo signal in a spin-echo
experiment and compared it to the coherence. Straightfor-
ward extensions of the formulas presented here may be ap-
plied to discuss the effects of more sophisticated pulse
sequences33–36 which are relevant for protecting quantum in-
formation storage.
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