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Non-Markoffian effects of a simple nonlinear bath

Hanno Gassmann,* Florian Marquardt, and C. Bruder
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
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We analyze a model of a nonlinear bath consisting of a single two-level system coupled to a linear bath~a
classical noise force in the limit considered here!. This allows us to study the effects of a nonlinear, non-
Markoffian bath in a particularly simple situation. We analyze the effects of this bath onto the dynamics of a
spin by calculating the decay of the equilibrium correlator of thez-component of the spin. The exact results are
compared with those obtained using three commonly used approximations: a Markoffian master equation for
the spin dynamics, a weak-coupling approximation, and the substitution of a linear bath for the original
nonlinear bath.
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I. INTRODUCTION

The linear bath of oscillators plays a prominent role
discussions of dissipation and decoherence@1,2#. In the clas-
sical limit, the force fluctuations derived from that bath co
respond to a Gaussian random process. Although this
generic case~due to the central limit theorem!, there are
physical situations when non-Gaussian random processe
important. In this article, we examine the simplest possi
quantum-mechanical bath whose fluctuations correspond
classical telegraph noise: a single two-level system subje
a white-noise force. The effects of this nonlinear bath
analyzed by coupling it, in turn, to a spin, whose relaxatio
dynamics under the action of the bath is calculated.

In the literature, another type of physically relevant no
linear bath is usually discussed: the spin bath@3,4#, consist-
ing of some large number of spins which are coupled to
system under consideration. Our model system is simple
that it contains only a single ‘‘nonlinear element,’’ the tw
level system. Irreversibility is generated not by having
larger number of spins but by the coupling to the linear ba
Although designed as a drastically simplified model syste
it may be physically relevant for situations such as char
tunneling systems@5# in the vicinity of a mesoscopic
quantum-coherent device~e.g., a Cooper-pair box@6#!,
which lead to electrostatic potential fluctuations and wh
are, themselves, also subject to dissipation and decoher
by their environment. Viewed as a whole, our model cons
of two coupled two-level systems, one of which is coupled
a linear bath. Of course, such systems have been stu
before, both in the context of the quantum measurem
problem and decoherence of coupled qubit systems. In R
@7–10#, the model of two spins~qubits! coupled to an envi-
ronment has been analyzed in detail. However, we emp
size that our perspective and the questions addressed in
article are different from these approaches, since we are
terested primarily in the differences arising from substitut
the nonlinear bath~in the form of the dissipative two-leve
system! by a linear bath~see Fig. 1!. This question is rel-
evant, since, in many physical situations where the pre
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nature of the bath decohering a given system is unknown
is simply treated as a linear bath, with some given correlat
function. It is, therefore, desirable to understand in more
tail the kind and magnitude of possible errors introduced
such an approximation, in cases where the coupling can
be assumed to be very weak.

The basic strategy is to calculate the equilibrium c
relator of the two-level system exactly~which can be done in
the limit of infinite temperature! and to compare the result
to three common approximations. One of those involves
placing the nonlinear bath by a linear bath, whose correla
function is prescribed to be the same as that of the nonlin
bath. The others are a Markoffian master equation an
weak-coupling approximation, applied to the dynamics
the spin under the influence of the bath.

The remainder of this work is organized as follows:
Sec. II, we give the model Hamiltonian. In Secs. III–VI, th
four different approaches are defined by specifying the e
lution equation for the density matrix in each case. For e
approach, we explain how the equilibrium correlator of thz
component of the spin may be obtained by solving th
equations. Finally, we present plots showing the numer

FIG. 1. ~a! Schematic representation of two stochastic proces
corresponding to a classical two-level fluctuator, or ‘‘telegra
noise’’ ~top!, and a Gaussian process~bottom!, yielding the same
power spectrum~right!. ~b! In our model, the two-level fluctuatorB
is coupled to a noise forceF and therefore represents a~nonlinear
and non-Markoffian! bath that acts on a systemS. ~c! The exact
master equation description~‘‘Approach 1’’ in main text! treatsS
andB as a composite system, subject toF.
©2002 The American Physical Society11-1
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results for the spin correlator, along with a comparison
tween the different approaches.

II. THE MODEL

We consider a two-level systemScoupled to another two
level systemB, which represents an example of a nonline
dissipative bath, since it is subject to a fluctuating forceF:

Ĥ5eSŝz
S1DSŝx

S1Jŝz
Sŝz

B1Dŝx
B1F̂ŝz

B1ĤF . ~1!

Here, the parameterseS and DS serve to define any de
sired two-level systemS. This system is coupled toB via
ŝz

B , with the coupling strength betweenSandB being given

by J. The oscillations ofŝz
B(t) at the frequency 2D are noisy,

due to the action of the fluctuating forceF̂, which may stem
from a linear bath of harmonic oscillators, whose Ham
tonian is given byĤF . Below we will specialize to the lim-
iting case of infinite temperature, whereF̂ becomes a purely
classical noise force.

The dissipative dynamics ofS can be characterized i
terms of several different quantities. Here we will analy
the decay of the equilibrium correlator^ŝz

S(t)ŝz
S(0)&.

Solving the full model of a system of two interactin
spins coupled to a linear bath at arbitrary temperatures
coupling strengths represents a formidable problem in its
It has been attacked in the past using the Feynman-Ve
influence functional@11#, both analytically@7# ~in certain
limiting cases! as well as numerically@10#. For our purposes
we will be content with analyzing a technically simpler sp
cial case. We chooseF to be a classical white noise fluctu
ating force,

^F~ t !F~0!&5gd~ t !, ~2!

which corresponds to the limit of infinite temperatureT of
the bath~taken such that the overall noise strength rema
constant!.

Under these circumstances, the dissipative dynamic
S1B under the action ofF can be described exactly by usin
a Markoffian master equation. Note that this is, of cour
unrelated to the validity of a master equation description
the action ofB onto S alone, which we will discuss below
The limit of infinite temperature is dictated mostly by th
desire to have a comparatively strong decay of the correl
of ŝz

B(t) ~with a decay rate on the order of the transiti
frequency 2D of B! while still retaining the validity of a
simple Markoffian master equation description~for the full
systemS1B). The concept of generating colored noise
coupling to a degree of freedom subject to white noise is a
employed in classical stochastic mechanics, see R
@12,13#.

In the following, we will call the exact solution ‘‘Ap-
proach 1,’’ while ‘‘Approach 2’’ refers to a simple maste
equation applied toSalone, ‘‘Approach 3’’ replaces the non
linear by a linear bath, and ‘‘Approach 4’’ is the wea
coupling approximation.
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III. THE EXACT SOLUTION: APPROACH 1

Derivation of the master equation. First we derive the
exact master equation description, which is used for the
tion of F onto the combined systemB1S:

ṙ̂SB~ t !52 i @ĤSB,r̂SB~ t !#2gr̂SB~ t !1gŝz
Br̂SB~ t !ŝz

B .
~3!

ĤSB is the Hamiltonian for the systemB1S alone. We start
with the von Neumann equation

i ṙ̂SB
(F)~ t !5@Ĥ~ t !,r̂SB

(F)~ t !#5@ĤSB1ŝz
BF~ t !,r̂SB

(F)~ t !#, ~4!

wherer̂SB
(F)(t) is the density matrix for one realization of th

force F(t). Ĥ(t) is the Hamiltonian for the systemB1S
under the action of the forceF(t). Rewriting Eq.~4! in in-
tegral form, we obtain

r̂SB
(F)~ t !2 r̂SB

(F)~0!5~2 i !E
0

t

dt@ĤSB1ŝz
BF~t!,r̂SB

(F)~t!#.

~5!

Iterating the last equation once leads to

ṙ̂SB
(F)~ t !5~2 i !@ĤSB,r̂SB

(F)~ t !#

1~2 i !F ŝz
BF~ t !,r̂SB

(F)~0!

1~2 i !E
0

t

dt@ĤSB1ŝz
BF~t!,r̂SB

(F)~t!#G . ~6!

In the following step we average overF(•) and usê F(t)&
50 and^r̂SB

(F)(t)&5 r̂SB(t). Note that for a white-noise force

F(t) averages factorize like ^F(t)F(t) r̂SB
(F)(t)&

5^F(t)F(t)&^r̂SB
(F)(t)&, since r̂SB

(F)(t) depends only on the
previous history ofF(•). Therefore, we find

ṙ̂SB~ t !5~2 i !@ĤSB,r̂SB~ t !#

1~2 i !2E
0

t

dt†ŝz
B ,@ŝz

B ,r̂SB~t!#‡^F~ t !F~t!&.

~7!

This leads to Eq.~3! by using Eq.~2!. Note that, in contrast
to the usual master equation,no secular approximation@14#
has been used in deriving this equation, which means
resulting decay rate does not have to be small when c
pared to the transition frequencies of the systemS1B. This
is possible because the bath correlation function is a d
function, which also makes the equation exact. We rem
further that Eq.~3! is solved directly in the basis in whichŝz

B

and ŝz
S are diagonal. A transformation into the interactio

picture ~as is commonly performed for the usual mas
equation description! would lead to explicitly time-
dependent terms in this equation.
1-2
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Decay of the equilibrium correlator. We want to obtain
the equilibrium correlator ofŝz

S(t),

^ŝz
S~ t !ŝz

S~0!&[tr@ r̂SB
(eq)ŝz

S~ t !ŝz
S~0!#. ~8!

It is convenient to rewrite Eq.~8! in terms of the projector
onto the spin-up state ofS, P̂[u↑&S^↑uS5 1

2 (11ŝz
S):

^ŝz
S~ t !ŝz

S~0!&54^P̂~ t !P̂~0!&21. ~9!

Here, we have usedr̂SB
(eq)5 1

4 . The correlator ofP̂(t) can
be found by calculating the probability to find the systemS
in the state ‘‘up’’ at the timet, if it had been ‘‘up’’ at time 0.
This has to be averaged over all realizations of the rand
processF(•):

^P̂~ t !P̂~0!&5 1
2 trB^^↑uSÛF~ t !P̂^ r̂B

(eq)ÛF
†~ t !u↑&S&F .

~10!

HereÛF(t) is the time-evolution operator forS1B under
the action of a given realization ofF(•). This equation is
valid only because, in the limit of infinite temperature co
sidered here, the probability of finding ‘‘spin up’’ at a certa
instant of time is independent of the history ofF(•). The
expression~10! is nothing but the populationrS11(t) of the
stateu↑&S for a time-evolution starting from the initial con
dition of ‘‘spin up,’’ r̂SB(0)5 P̂^ r̂B

(eq) :

^P̂~ t !P̂~0!&5 1
2 rS11~ utu!. ~11!

Note that rS11 decays towards 1/2, such th

^ŝz
S(t)ŝz

S(0)& vanishes fort→` ~as it should be!. We have
used the fact that the correlator is symmetric in time, sin
the potentially antisymmetric imaginary part vanishes~again
due to the limit of infinite temperature!. r̂S(t) can be calcu-
lated by applying the master equation that describes the
tion of F onto S1B. Put differently, Eq.~11! constitutes an
example of the quantum regression theorem. Usingr̂S , we
calculate the Fourier transform of the equilibrium correla
of ŝz

S(t):

Kzz
S ~v![

1

2pE2`

1`

dteivt^ŝz
S~ t !ŝz

S~0!&

5
1

pE2`

1`

dteivt~rS11~ utu!21/2!. ~12!

Kzz
S (v) is real valued, symmetric and the integral over

frequencies gives 1.
Time evolution of the density matrix. The master equation

~3! for the density matrixr̂ ([r̂SB) in the four-dimensional
Hilbert space ofS1B represents a system of linear differe
tial equations with constant coefficients. The latter are giv
by a complex-valued 16316 matrix C that corresponds to
the ‘‘superoperator’’ on the right-hand side of the mas
equation. The solution is the complex vectorr, which con-
sists of the 16 components of the density matrixr̂:
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ṙ52Cr. ~13!

The entries ofC can be read off directly from Eq.~3!. The
formal solution of Eq.~13!,

r~ t !5e2Ctr~0!, ~14!

can be expressed in terms of the right eigenvectorsur ( j )&, the
left eigenvectorŝr ( j )u and the eigenvaluesl ( j ) of C:

r~ t !5(
j

ur ( j )&^r ( j )ur~0!&e2l( j )t. ~15!

C is not necessarily Hermitian, so that thel ( j ) usually are
complex valued~with nonnegative real parts! and theur ( j )&
do not form an orthonormal basis~however,^r ( i )ur ( j )&5d i j
by construction!. In order to obtainrS11(t), we have to per-
form the trace overB, rS11(t)5rSB1111(t)1rSB1212(t). ~In
rSBs8b8sb the indicess,s8 refer toS, while b,b8 refer toB.!
We will use the same notation for the components ofr ( j ),
which is a complex vector. Then we obtain

E
0

`

dteivtrS11~ t !5(
j

~r1111
( j ) 1r1212

( j ) !
^r ( j )ur~0!&

l ( j )2 iv
. ~16!

Taking the real part of this expression givesKzz
S (v), see Eq.

~12!.
Numerical results. The following steps have been pe

formed in order to calculate the correlatorKzz
S (v) of ŝz

S(t):
The entries of the matrixC are obtained from Eq.~3!. The
eigenvalues and eigenvectors ofC are calculated numerically
and used to getKzz

S (v) according to Eqs.~16! and ~12!.
The relevant parameters in our model areeS , DS , D,

the coupling strengthJ, and the strengthg of the noise force
F. We choose the time scale such thatD[1. The results
discussed in the following have been calculated forDS
51.2 (S andB ‘‘almost in resonance’’!.

To begin our discussion, we note some generic feature
the results obtained for Approaches 1 and 2. Since in th
casesKzz

S (v) is essentially the Fourier transform of a dens
matrix relaxing according to a master equation, it consists
several Lorentzian peaks. Their number is constrained to
less than the maximum number of transition frequencies
the respective system (6 forS1B in Approach 1, and 1 for
S in Approach 2, plus possible zero-frequency ‘‘pure’’ rela
ation!. In practice, degeneracies between transition frequ
cies and selection rules reduce that number to 2~or 3) for
Approach 1, and 1~or 2) for Approach 2, foreS50 ~or eS
Þ0).

In the limit of weak coupling,J→0, all that remains is a
broadened peak at the transition frequency 2DS of systemS
alone. In that limit, the results for all approaches coincide,
expected~see Figs. 4 and 5!. With increasingJ, the peaks get
broadened and shifted, and additional peaks may appea~in
the case of Approaches 1, 3, and 4!.
1-3
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The most notable difference to the simple master equa
of Approach 2 is the appearance of a second peak at
transition frequency 2D of the two-level fluctuatorB. At
small J, the strength of this peak grows likeJ2, while its
width is fixed ~depending ong). In this way, the power
spectrum of the bath fluctuations shows up in the short-t
behavior of the correlator of the systemS. This behavior
cannot be captured by the master equation~Approach 2!.

IncreasingJ leads to a frequency shift and a change in
width of the ‘‘original’’ peak at 2DS , much like predicted by
the simpler Approach 2. However, in the description of t
exact Approach 1, these changes are due to the chang
eigenfrequencies and eigenvectors of the combined sys
S1B. At small J, the results of Approaches 1 and 2 can
shown to coincide using perturbation theory. Deviations fr
Approach 2 appear at higher values ofJ, where the energy
shift of Approach 1 only growslinearly with J ~see Figs. 4
and 5, lower graphs!. In contrast, the frequency of the seco

FIG. 2. The^BB&v correlation function for different values o
g. The parameters areJ51, D51.

FIG. 3. The Fourier-transformKzz
S (v) of the equilibrium

correlator of ŝz
S(t), for different values of the noise strengthg/

(2p)(50.001, 0.01, 0.05, and 0.1, from topmost to lowest grap!.
The values of the other parameters areD51, DS51.2, J50.5, and
eS50. Approaches 1 and 4, solid line; Approach 2, dashed li
Approach 3, dash-dotted line.
04111
n
he

e

e

in
m

peak is suppressed to zero. This behavior can easily be fo
from the diagonalization of the Hamiltonian for the com
bined systemB1S in the limit J→`, when one obtains two
pairs of degenerate energy levels, separated by 2J.

Regarding the dependence on the noise strengthg, the
same qualitative remarks apply as for Approach 2~see dis-
cussion below in Sec. IV!. However, it is interesting to note
that thereis a frequency shift with increasingg in Approach
1 as well~see Fig. 3!, in spite of the fact that the additiona
terms in the nonsecular master equation~3! seem to describe
a purely relaxational dynamics. This is in contrast to t
behavior known from the usual form of the master equati

;

FIG. 4. The Fourier-transformKzz
S (v) of the equilibrium cor-

relator of ŝz
S(t), for different values of the coupling strengthJ

(50.1, 0.5, 0.75, and 1.0, from topmost to lowest curve!. The val-
ues of the other parameters areD51, DS51.2, g/2p50.1, and
eS50. Approaches 1 and 4, solid line; Approach 2, dashed li
Approach 3, dash-dotted line.

FIG. 5. The Fourier-transformKzz
S (v) of the equilibrium cor-

relator of ŝz
S(t), for different values of the coupling strengthJ

(50.1, 0.5, 0.75, and 1.0, from topmost to lowest curve!. The val-
ues of the other parameters areD51, DS51.2, g/2p50.1, and
eS51. Approach 1, solid line; Approach 2, dashed line; Approa
3, dash-dotted line; Approach 4, dotted line.
1-4



tly

st

p-
ic
s
xi
of

n
e

re
ic

be

in

o

tor
ion

ier

ich

on

a-
ion
tor

ak

-
e

,
f

s.

f

e-
f

t of

NON-MARKOFFIAN EFFECTS OF A SIMPLE NONLINEAR BATH PHYSICAL REVIEW E66, 041111 ~2002!
Eq. ~17!, where the energy shifts can be read off direc
from the imaginarycoefficients in the equation.

IV. THE SIMPLE MASTER EQUATION: APPROACH 2

As has been explained above, we will use the ma
equation description not only for the action ofF onto the
combined systemS1B @see Eq.~3!#, but also for the action
of F1B onto S alone. This constitutes the approximate A
proach 2, involving the usual kind of master equation, wh
is valid only for sufficiently weak coupling J, since it i
derived by applying both the Markoff and secular appro
mation @see Refs.@14,15##. In the unperturbed eigenbasis
systemS, it reads

ṙSk j52@Gk1G j1G̃k j1 i ~Dk2D j !1 i ~Ek2Ej !#rSk j

1dk j(
l 5” k

rSlluAklu22p^BB&El2Ek
. ~17!

Equation~17! describes the relaxation of the reduced de
sity matrix r̂S of systemS alone, under the action of th
couplingJŝz

Sŝz
B to the bathB1F. We have introduced the

abbreviationÂ[ŝz
S .

The Fourier transform of the correlator ofB̂[Jŝz
B defines

the ‘‘bath spectrum’’

^B~ t !B~0!&[^B̂~ t !B̂~0!&5J2^ŝz
B~ t !ŝz

B~0!&,

^BB&v[
1

2pE2`

1`

dteivt^B~ t !B~0!&. ~18!

It is real and symmetric in the limit of infinite temperatu
considered here, and therefore it is equivalent to a class
colored noise force. As will be explained below,^BB&v is
found by applying the master equation~3! to B alone. The
decay rates are defined by

Gk[p(
n

uAknu2^BB&Ek2En
,

G̃k j[22pAkkAj j ^BB&0 , ~19!

and the energy shifts are given via

Dk[(
n

uAknu2E dv
^BB&v

Ek2En2v
. ~20!

Here the indices and energies refer to the unpertur
eigenstates of the original Hamiltonian ofS alone: ĤS

[eSŝz
S1DSŝx

S . The integrals should be understood as pr
cipal value integrals.

The time-evolution ofr̂S is found from Eq.~17! using the
same approach as in Sec. III, involving the diagonalization
a superoperatorC. In the present case,C corresponds to the
434 matrix whose entries are read off from Eq.~17!. There-
fore, the equation corresponding to Eq.~16! only contains
r11

( j ) , instead of the sum inside the brackets.
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Furthermore, we have to obtain the equilibrium correla
of ŝz

B(t), which is needed as input for the master equat
describing the relaxation ofS alone ~Approach 2!, the nu-
merical sampling of random processes~Approach 3! and the
weak-coupling approximation~Approach 4!.

This is done by calculating the relaxation ofr̂B(t) under
the action ofF, starting from the initial conditionr̂B(0)
5u↑&B^↑uB and applying the same formulas as above~with B
instead ofS), for the master equation~3!, adapted to the
two-dimensional Hilbert space ofB ~with a 434 matrixC).

^ŝz
B(t)ŝz

B(0)& undergoes damped oscillations. Its Four
transform

Kzz
B ~v!5

^BB&v

J2
5

8D2g

p

1

~v224D2!214v2g2
~21!

consists of broad peaks of widthg ~for g2,4D2), which is
proportional to the strength of the noise forceF and may be
comparable to the transition frequency 2D itself ~see Fig. 2!.
Thus,B indeed represents a noisy two-level fluctuator, wh
acts onto S as a nonlinear ~non-Gaussian! and non-
Markoffian ~colored! bath.

Numerical results. First the action ofF onto B is consid-
ered, to obtain the correlation function^BB&v . This result is
given in Eq. ~21!. It is used to set up the master equati
describing the action ofF1B onto S, Eq. ~17!. Its coeffi-
cients define a 434 ‘‘ C matrix,’’ which is diagonalized. The
results are inserted into the appropriately modified Eq.~16!,
in order to obtainKzz

S (v).
Naturally, the behavior of Approach 2 is simplest to an

lyze, since it is the textbook example of a master equat
applied to a single two-level system. Since the correla
^BB&v is proportional toJ2, both the shift of the transition
frequency and the width of the peak~s! increase likeJ2, for
arbitrarily largeJ. In contrast, the dependence of the pe
width and the frequency shift on the noise strengthg is non-
monotonous. It is determined by the evolution of^BB&v @see
Eq. ~21! and Fig. 2# with increasingg. For very smallg, the
two-level fluctuatorB performs very weakly damped oscilla
tions at the frequency 2D. Unless it is exactly at resonanc
with the systemS, the dissipative effects ofB on the dynam-
ics of S will be weak in that regime. The decay rate ofS,
which is given by the power spectrum ofB evaluated at
2DS , grows linearly in g @for g2!(DS

22D2)2/DS
2]. The

transition frequency ofS is shifted upwards or downwards
depending on whether the main weight of the spectrum oB
is located below or aboveDS (D,DS or D.DS). For in-
creasingg, B performs more strongly damped oscillation
In the limit of large g, the spectrum̂ BB&v concentrates
around zero frequency~see Fig. 2! such that the decay rate o
S decreasesagain ~like 1/g), after having gone through a
maximum. The magnitude of the energy shift will also d
crease for increasingg, simply because the contributions o
the power spectrum ofB lying to either side of 2DS will tend
to cancel each other. However, in the limitg→`, the shift
always saturates at a positive value which is independen
1-5
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GASSMANN, MARQUARDT, AND BRUDER PHYSICAL REVIEW E66, 041111 ~2002!
D. These facts can be read off from the analytical result
Approach 2~written down in the special case ofeS50):

Kzz
S ~v!5

1

2p (
s561

G

G21~v2sv0!2
. ~22!

Here the peak width is given byG52J2 R eS(2DS)
52p^BB&2DS

, the shifted transition frequency isv052DS

22J2 I mS(2DS), and we have definedS(v)[(2g
1 iv)/(2v214D212ivg).

The simple master equation is expected to come clos
the true result, as long as the conditions of the Markoff a
secular approximation are fulfilled. This means the coupl
strengthJ has to be so small that the resulting decay oS
proceeds slowly compared with the transition frequency
self ~secular approximation! and with the correlation time o
the bath~Markoff approximation!. The latter is given bytB

51/g if g2,4D2 andtB51/(g2Ag224D2) if g2.4D2.

V. THE NONLINEAR BATH REPLACED BY A LINEAR
BATH: APPROACH 3

Approach 3 consists in replacing the nonlinear bath b
linear one. If the two-level fluctuatorB were replaced by a
harmonic oscillator@16,17#, this procedure of substituting
linear bath with an appropriate correlation function for t
combination ofF and B would be exact. Here, it is an ap
proximation whose reliability we want to analyze by com
parison to the exact solution. In our case, the fact that
power spectrum̂BB&v , given in Eq.~21!, is real and sym-
metric means thatB can be treated as a classical Gauss
random process. Therefore, we have to solve a Lang
equation for the density matrix

ṙ̂S
(B)~ t !52 i @Ĥstoch~ t !,r̂S

(B)~ t !#, ~23!

with the stochastic time-dependent Hamiltonian

Ĥstoch~ t !5eSŝz
S1DSŝx

S1B~ t !ŝz
S . ~24!

We calculate numerically the time-evolution ofr̂S
(B)(t) under

the action of the stochastic time-dependent Hamiltonian
fined in Eq.~24!, which depends onB(t). The description of
open quantum systems by a stochastic Schro¨dinger equation
has recently attracted increasing attention@15,18#.

The density matrixr̂S
(B)(t) has to be averaged over a st

tistical sample of different field configurationsB(t). This
sample is produced by generating the Fourier coefficient
B as independent complex Gaussian random variables o
propriate variance~given by the power spectrum!. The field
B(t) itself is obtained using a Fast Fourier Transform~FFT!.
After averaging, we may use

^P̂~ t !P̂~0!&5 1
2 ^rS11

(B)~ utu!&B ~25!

and Eqs.~10! and~12! in order to obtainKzz
S (v). To this end,

the Fourier transform ofrS11(utu) is calculated numerically
using a FFT on a time grid of sufficiently small step-sizeDt
04111
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and sufficiently large length. The results displayed in t
figures have been obtained using 104 samples and a fre
quency resolution ofDv52p/800. The curves have bee
smoothed by averaging over 5 to 20 adjacent frequency b

Since Approach 3 takes the full bath spectrum^BB&v as
input, this spectrum may also show up in the result for
system correlatorKzz

S (v), as is indeed the case. Figure
demonstrates that this effect is most pronounced for sm
values ofg, where the bath spectrum has a relatively sh
structure@the noise fieldB(•) acting onS deviates strongly
from white noise#. In these cases, the qualitative agreem
between Approach 3 and Approach 1~‘‘exact solution’’! is
much better than that between Approach 2~‘‘simple master
equation’’! and Approach 1~see also Fig. 6!. Nevertheless,
there are deviations: In particular, there is no visible shift
the peaks in Approach 3 with increasingJ. They just become
wider and asymmetric~this applies especially to the peak
frequency 2DS). For higher values ofg, the linear bath~Ap-
proach 3! in general shows less structure than the exact
lution, obtained for the actual nonlinear bath.

VI. THE WEAK-COUPLING APPROXIMATION:
APPROACH 4

Instead of the Markoff approximation one can use a we
coupling approximation@15#. This keeps the full information
contained in the correlator̂BB&v , at the price of introduc-
ing a kernel for the master equation which is no longer lo
in time. Let us shortly describe the derivation of the wea
coupling equation. The von Neumann equation, iterated u
second order, reads in the interaction picture with respec
Ĥ0[Ĥ2V̂:

FIG. 6. The Fourier-transformKzz
S (v) of the equilibrium cor-

relator of ŝz
S(t), for different values of the coupling strengthJ

(50.1, 0.3, and 0.5; from topmost to lowest curve!. The values of
the other parameters areD51, DS51.2, g/2p50.001, andeS

50. Approaches 1 and 4, solid line; Approach 2, dashed line; A
proach 3, dash-dotted line.
1-6
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ṙ̂ I~ t !52 i @V̂I~ t !,r̂ I~0!#2E
0

t

dt@V̂I~ t !,@V̂I~t!,r̂ I~t!##.

~26!

The density matrix is replaced by an approximate factori
density matrix r̂ I(t)5 r̂SI(t) ^ r̂B(0), where the bath re-
mains described by a thermal equilibrium distribution. T
equation becomes

ṙ̂SI~ t !52 i tr B@V̂I~ t !,r̂S~0! ^ r̂B~0!#

2E
0

t

dttr B†V̂I~ t !,@V̂I~t!,r̂SI~t! ^ r̂B~0!#‡,

~27!

where a trace over the bath, which also includesF, has been
taken. Now we introduce the interaction operatorV̂, which is
given by V̂5ÂB̂. In our case,B̂ has zero mean and its co
relator is symmetric, see Eq.~21!. We get

ṙ̂SI~ t !52E
0

t

dt†ÂI~ t !,@ÂI~ t2t!,r̂SI~ t2t!#‡^B~t!B~0!&,

~28!

Going back to the Schro¨dinger picture and insertingÂ5ŝz
S

then leads to the following weak-coupling equation, which
second order inJ:

ṙ̂S~ t !52 i @ĤS ,r̂S~ t !#2E
0

t

dt@ŝz
S ,e2 iĤ St

3@ŝz
S ,r̂S~ t2t!#eiĤ St#^B~t!B~0!&. ~29!

This equation is conveniently solved by using the Lapla
transform. The Laplace transform of the equilibrium co
relator of the bathB is connected to the Fourier transform
the usual way

CBB~s![E
0

`

dte2st^B~ t !B~0!&5E
2`

`

dv
^BB&v

s1 iv

5J2
s12g

s212gs14D2
. ~30!

Using the Laplace transform, the system of differential eq
tions becomes a system of linear algebraic equations, w
can be solved by matrix inversion. All the results can
obtained analytically. However, here we only present
comparatively brief expression for the special case ofeS
50:

Kzz
S ~v!5

1

p
ReH s14CBB~s!

s214sCBB~s!14DS
2Us52 ivJ . ~31!

These analytical results@see, e.g., Eq.~31!# are then
evaluated with the appropriate numerical values of the
rameters.
04111
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In general, we would expect the weak-coupling soluti
to be a bit worse than the simulation of the linear bath w
colored noise correlations~Approach 3!, since it is an ap-
proximation to the latter case. However, the result for
special caseeS50 turns out to coincide completely with th
exact solution~Approach 1!. The second peak shows up,
contrast to the Markoff approximation. The solution foreS

51 ~or, more generally,eS5” 0) is good for small system
bath couplingJ. It fails for increasingJ, where Approach 3
seems to be the better approximation, providedeS is not too
small ~see discussion above!.

VII. CONCLUSIONS

We have discussed a simple model of a nonlinear b
consisting of a single two-level system subject to a class
white-noise force. Its action on another two-level system
been analyzed using four different approaches. Numer
results for various special cases have been obtained and
cussed. The regimes where the different approaches w
well became clear: The standard Markoff approximati
gives good results as long as the coupling strength is so s
that the decay is slow compared to the transition freque
and the bath correlation time. However, if the bath spectr
displays sharp structures, their effects on the system’s
relator are only retained in the weak-coupling equation w
its memory kernel. As expected, both approaches fail in
regime of large coupling between system and bath. In t
regime the linear bath may still provide a good approxim
tion to the original nonlinear bath. Again, this applies
particular when the bath spectrum has a strongly pea
structure. However, deviations between the linear and
original nonlinear bath are clearly visible. Although we on
discussed the simplest example of a nonlinear bath, we
pect the statements about the regimes where the diffe
approximations work to be valid also for more complicat
systems.

From the point of view of the computational effort, th
stochastic simulation used in Approach 3 is the most un
vorable one, because the differential equations have to
integrated numerically many times to get the statistical av
age. The master equation and the weak-coupling approxi
tion require the least effort, in particular because expl
analytical expressions could be found for our model.

We plan to adress the~technically more involved! case of
arbitrary finite temperatures in the future. Further possi
extensions include an analysis of the higher-order term
the weak-coupling equation, as well as replacing the tw
level systemB by a spin of larger magnitude, to observe t
transition to the linear bath.
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