PHYSICAL REVIEW E 66, 041111 (2002
Non-Markoffian effects of a simple nonlinear bath
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We analyze a model of a nonlinear bath consisting of a single two-level system coupled to a lingar bath
classical noise force in the limit considered herEhis allows us to study the effects of a nonlinear, non-
Markoffian bath in a particularly simple situation. We analyze the effects of this bath onto the dynamics of a
spin by calculating the decay of the equilibrium correlator ofztmemponent of the spin. The exact results are
compared with those obtained using three commonly used approximations: a Markoffian master equation for
the spin dynamics, a weak-coupling approximation, and the substitution of a linear bath for the original
nonlinear bath.
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[. INTRODUCTION nature of the bath decohering a given system is unknown, it
is simply treated as a linear bath, with some given correlation
The linear bath of oscillators plays a prominent role infunction. It is, therefore, desirable to understand in more de-
discussions of dissipation and decoherdricg]. In the clas- tail the kind and magnitude of possible errors introduced by
sical limit, the force fluctuations derived from that bath cor-such an approximation, in cases where the coupling cannot
respond to a Gaussian random process. Although this is e assumed to be very weak.
generic casgdue to the central limit theoremthere are The basic strategy is to calculate the equilibrium cor-
physical situations when non-Gaussian random processes dator of the two-level system exactiywhich can be done in
important. In this article, we examine the simplest possiblehe limit of infinite temperatuneand to compare the results
quantum-mechanical bath whose fluctuations correspond tot& three common approximations. One of those involves re-
classical telegraph noise: a single two-level system subject tBlacing the nonlinear bath by a linear bath, whose correlation
a white-noise force. The effects of this nonlinear bath ardunction is prescribed to be the same as that of the nonlinear
analyzed by coupling it, in turn, to a spin, whose relaxationaPath. The others are a Markoffian master equation and a

dynamics under the action of the bath is calculated. weak-coupling approximation, applied to the dynamics of
In the literature, another type of physically relevant non-the spin under the influence of the bath.
linear bath is usually discussed: the spin b@], consist- The remainder of this work is organized as follows: In

ing of some large number of spins which are coupled to théSec. Il, we give the model Hamiltonian. In Secs. IlI-VI, the
system under consideration. Our model system is simpler ifour different approaches are defined by specifying the evo-
that it contains 0n|y a Sing|e “nonlinear element,” the two- lution equation for the density matrix in each case. For each
level system. Irreversibility is generated not by having a@pproach, we explain how the equilibrium correlator of zhe
larger number of spins but by the coupling to the linear bathcomponent of the spin may be obtained by solving these
Although designed as a drastically simplified model systemequations. Finally, we present plots showing the numerical
it may be physically relevant for situations such as charged
tunneling systemg5] in the vicinity of a mesoscopic @8
quantum-coherent devic¢e.g., a Cooper-pair box6]), :HH:HH:IHHF ©
which lead to electrostatic potential fluctuations and which L

are, themselves, also subject to dissipation and decoherence

by their environment. Viewed as a whole, our model consists

of two coupled two-level systems, one of which is coupled to % ®
a linear bath. Of course, such systems have been studied (a)
before, both in the context of the quantum measurement

problem and decoherence of coupled qubit systems. In Refs.
[7-10], the model of two spingqubitg coupled to an envi- m m
(b) (c)

B(t)

ronment has been analyzed in detail. However, we empha-
size that our perspective and the questions addressed in this
article are Q|ﬁeren_t from t_hese approa}ches, since we are In- g 1 (a) Schematic representation of two stochastic processes
terested primarily in the differences arising from subst|tut|ngcorresponding to a classical two-level fluctuator, or “telegraph
the nonlinear batfin the form of the dissipative two-level ise” (top), and a Gaussian procegsottom), yielding the same
system by a linear bath(see Fig. 1 This question is rel-  power spectrungright). (b) In our model, the two-level fluctuatd
evant, since, in many physical situations where the precisg coupled to a noise force and therefore represents(@onlinear
and non-Markoffiah bath that acts on a syste® (c) The exact
master equation descriptidfiApproach 1" in main texy treatsS
*Electronic address: Hanno.Gassmann@unibas.ch andB as a composite system, subjectRo
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results for the spin correlator, along with a comparison be-

tween the different approaches.

Il. THE MODEL

We consider a two-level systeSicoupled to another two-

level systemB, which represents an example of a nonlinear

dissipative bath, since it is subject to a fluctuating fokce

A= esoSt Ao St 36555+ AP+ EoB1 A,

oY)

Here, the parameterss and Ag serve to define any de-
sired two-level systen® This system is coupled t8 via

(}ZB, with the coupling strength betwe&uandB being given
by J. The oscillations of}f(t) at the frequency 2 are noisy,

due to the action of the fluctuating forée which may stem
from a linear bath of harmonic oscillators, whose Hamil-
tonian is given byH . Below we will specialize to the lim-
iting case of infinite temperature, wheffebecomes a purely
classical noise force.

The dissipative dynamics of can be characterized in
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IIl. THE EXACT SOLUTION: APPROACH 1

Derivation of the master equatiorFirst we derive the
exact master equation description, which is used for the ac-
tion of F onto the combined syste®+ S:

;)ss(t): —i[Hsp,psa(t)]— ypsa(t) + yoBpsa(t) ot . @
3

I:|SB is the Hamiltonian for the systel®+ S alone. We start
with the von Neumann equation

ip§a()=[H(1),p§3(]=[Hspt o7F(1),pEA(D], (4
wherep{)(t) is the density matrix for one realization of the

force F(t). H(t) is the Hamiltonian for the systeB+S
under the action of the forcE(t). Rewriting Eq.(4) in in-
tegral form, we obtain

~ ~ t ~ ~ ~
pE(0)—pE(0)=(—1) fodr[HSB+o?F(r>,p<sFB>(r>].
(5)

terms of several different quantities. Here we will analyze

the decay of the equilibrium correlatéo3(t) 05(0)).
Solving the full model of a system of two interacting

spins coupled to a linear bath at arbitrary temperatures and
coupling strengths represents a formidable problem in itself.
It has been attacked in the past using the Feynman-Vernon

influence functional[11], both analytically[7] (in certain
limiting case$ as well as numericallj10]. For our purposes,
we will be content with analyzing a technically simpler spe-
cial case. We choosE to be a classical white noise fluctu-
ating force,

(F(OF(0))=ya(1), )

which corresponds to the limit of infinite temperatureof

Iterating the last equation once leads to
P =(~D[Hse.p (D]

+(—)| oBF(1),p%3(0)

t ~ ~ ~
+<—i)Jodr[HSszBF(r),ngg(r)] ()

In the following step we average ovel(-) and use(F(t))
=0 and(p{J(t))=psg(t). Note that for a white-noise force
F(t) averages factorize like (F(t)F(r)pR(7))
=(F)F(D))WpL(7), sincep{l(7) depends only on the

the bath(taken such that the overall noise strength remaingrevious history of (). Therefore, we find

constank

Under these circumstances, the dissipative dynamics of

S+ B under the action of can be described exactly by using

a Markoffian master equation. Note that this is, of course,
unrelated to the validity of a master equation description for

the action ofB onto S alone, which we will discuss below.
The limit of infinite temperature is dictated mostly by the

pse()=(—D)[Asa.psa(t)]
t ~ ~ ~
+<—i>2fodr[(r?,[<r?,pss<r>]]<F<t>F<r>>-
@

desire to have a comparatively strong decay of the correlator

of &E(t) (with a decay rate on the order of the transition
frequency 24 of B) while still retaining the validity of a
simple Markoffian master equation descriptidar the full

systemS+B). The concept of generating colored noise by‘B)ared to the transition frequencies of the sys@#B. This

coupling to a degree of freedom subject to white noise is als

employed in classical stochastic mechanics, see Ref

[12,13.

In the following, we will call the exact solution “Ap-
proach 1,” while “Approach 2” refers to a simple master
equation applied t& alone, “Approach 3” replaces the non-
linear by a linear bath, and “Approach 4” is the weak-
coupling approximation.

This leads to Eq(3) by using Eq.(2). Note that, in contrast

to the usual master equatiomy secular approximatiofil4]

has been used in deriving this equation, which means the
resulting decay rate does not have to be small when com-

is possible because the bath correlation function is a delta

?Unction, which also makes the equation exact. We remark

further that Eq(3) is solved directly in the basis in whiaAhZB

and ¢ are diagonal. A transformation into the interaction
picture (as is commonly performed for the usual master
equation description would lead to explicitly time-
dependent terms in this equation.
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Decay of the equilibrium correlatoWe want to obtain p=—Cp. (13)
the equilibrium correlator ofrf(t),

The entries ofC can be read off directly from E@3). The

(03(1)a3(0)) =t pEPo3(t)a3(0)]. ®  formal solution of Eq(13),
It is convenient to rewrite E(8) in terms of the projector e
onto the spin-up state &, P=|1)g(1|s=(1+0Y): p(t)=e ~p(0), (14)
(o3(1)a9(0))=4(P(t)P(0)) 1. (9 can be expressed in terms of the right eigenvedidf¥), the

A A left eigenvectorg p!| and the eigenvalues!) of C:
Here, we have used$?=%. The correlator oP(t) can
be found by calculating the probability to find the syst&m _ _ _
in the state “up” at the tima, if it had been “up” at time 0. p()=2>, 100 W] p(0))e ", (15)
This has to be averaged over all realizations of the random !
process=(-):
C is not necessarily Hermitian, so that th&) usually are
(P(1)P(0))= 2 tra((T|sUr(t)P@ pE20L (1) 1) o)k - complex valuedwith nonnegative real pantgnd the|p™)
(10 do not form an orthonormal basisowever,(p®|p)= 5,
R by construction In order to obtairpg;4(t), we have to per-
HereUg(t) is the time-evolution operator f{@+ B under  form the trace oveB, pgi1(t)=psei111t) +pspioidt). (In
the action of a given realization d¥(-). This equation is psggp'sp the indicess,s’ refer toS while b,b’ refer toB.)
valid only because, in the limit of infinite temperature con-We will use the same notation for the componentsp8f,
sidered here, the probability of finding “spin up” at a certain which is a complex vector. Then we obtain
instant of time is independent of the history IBf-). The

expression10) is nothing but the populatiopg;s(t) of the . _ — (pW]p(0))

state|T)s for a time:evolutiog stAarting from the initial con- fo dte""tp311(t)=z (pPart p(l'z)lzr. (16)

dition of “spin up,” psg(0)=P®pF?: ' lo
(P(1)P(0))= % psis(Jt]). (11)  Taking the real part of this expression giws(w), see Eq.

(12).

Note that pg;q decays towards 1/2, such that Numerical results The following steps have been per-
(a3(t)a3(0)) vanishes fot—oo (as it should bp We have formed in order to calculate the correlatéf(w) of o3(t):
used the fact that the correlator is symmetric in time, sincélhe entries of the matriC are obtained from Eq3). The
the potentially antisymmetric imaginary part vanisii@gain  eigenvalues and eigenvectors@ére calculated numerically

due to the limit of infinite temperatureps(t) can be calcu- and used to gek?(w) according to Eqs(16) and(12).
lated by applying the master equation that describes the ac- The relevant parameters in our model ag As, A,
tion of F onto S+B. Put differently, Eq.(11) constitutes an the coupling strengtl, and the strengtly of the noise force

example of the quantum regression theorem. Uéiggwe F. We choose the time scale such thet&=1. The results

calculate the Fourier transform of the equilibrium correlatordiscussed in the following have been calculated fog
of &3(t): =1.2 (S andB “almost in resonancey.
():

To begin our discussion, we note some generic features of
1 . A the results obtained for Approaches 1 and 2. Since in these

Kfz( w)= ﬂf dte “’t(af(t)af(O)) case.stz(w)l is essentiglly the Fourier transfgrm pf a de_nsity
- matrix relaxing according to a master equation, it consists of
1 (4= several Lorentzian peaks. Their number is constrained to be
= —f dte'“(pgia(|t]) — 1/2). (12)  less than the maximum number of transition frequencies of

T the respective system (6 f&+B in Approach 1, and 1 for
. . . Sin Approach 2, plus possible zero-frequency “pure” relax-
S L

KZ{w) is real valued, symmetric and the integral over a”ation). In practice, degeneracies between transition frequen-

frquencies gi\_/es 1. . _ cies and selection rules reduce that number t@23) for
Time evolution of the density matrikhe master equation Approach 1, and Xor 2) for Approach 2, foreg=0 (or eg

(3) for the density matrix (=psg) in the four-dimensional ).
Hilbert space ofS+B represents a system of linear differen- | the limit of weak couplingJ— 0, all that remains is a
tial equations with constant coefficients. The latter are giverproadened peak at the transition frequendysdf systemS

by a complex-valued 2816 matrix C that corresponds to alone. In that limit, the results for all approaches coincide, as
the “superoperator” on the right-hand side of the masterexpectedsee Figs. 4 and)5With increasing), the peaks get
equation. The solution is the complex vectgrwhich con-  proadened and shifted, and additional peaks may apjear
sists of the 16 components of the density mafrix the case of Approaches 1, 3, and 4

+
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FIG. 2. The(BBj),, correlation function for different values of

h N b1 A1 FIG. 4. The Fourier-transforr;(w) of the equilibrium cor-
v. The parameters a , A=1.

relator of &f(t), for different values of the coupling strength

The most notable difference to the simple master e uatiof]zo'l‘ 0.5, 0.75, and 1.0, from topmost to lowest curdée val-
P q es of the other parameters ake=1, Ag=1.2, y/27=0.1, and

of Approach 2 Is the appearance of a second peak at theeS:O. Approaches 1 and 4, solid line; Approach 2, dashed line;

transition frequency 2 of the two-level fluctuatorB. At Approach 3, dash-dotted line.

small J, the strength of this peak grows lik¥, while its ’

width is fixed (depending ony). In this way, the power

spectrum of the bath fluctuations shows up in the short-tim

behavior of the correlator of the syste This behavior bined systenB+ S in the limit J—oc, when one obtains two

cannot be.captured by the master qua(mpproach 2 . pairs of degenerate energy levels, separateddy 2
Increasing] leads to a frequency shift and a change in the Regarding the dependence on the noise strengtthe

width of the “original” peak at 2\ 5, much like predicted by e .
. . . same qualitative remarks apply as for Approacts@e dis-
the simpler Approach 2. However, in the description of thecussion below in Sec. IV However, it is interesting to note

exact Approac_h L thesg changes are due to th.e change #lat therds a frequency shift with increasing in Approach
eigenfrequencies and eigenvectors of the combined syste as well(see Fig. 3, in spite of the fact that the additional

S+B. At sm_aII_J, the_results of Approaches 1 an_d 2 can beterms in the nonsecular master equatiBnseem to describe
shown to coincide using perturbation theory. Deviations from

. a purely relaxational dynamics. This is in contrast to the
Approach 2 appear at higher yaluesbfyvhere the ENeTYY  hehavior known from the usual form of the master equation,
shift of Approach 1 only growsinearly with J (see Figs. 4

and 5, lower graphslIn contrast, the frequency of the second

eak is suppressed to zero. This behavior can easily be found
rom the diagonalization of the Hamiltonian for the com-

20 T T T T
L
20 T T T 10_ J=01 -
¥2m =0.001 5, = |

B :I: N ) 0 ] ! !
—_ 3 ] 5] T T T T
8 ': " WA 2
~y g_ “ e f ] s J=0.5
"% | y2r=001 ] 505 i
5 3r ] s
2 of g = - Eo.
B o
8 g .
g =
B =
: 5
i N

93 2 25 3 3.5

Frequency ® Frequency ®
FIG. 3. The Fourier-transform<fz(w) of the equilibrium FIG. 5. The Fourier-transforrKfZ(w) of the equilibrium cor-

correlator of[rf(t), for different values of the noise strengtf relator of [rf(t), for different values of the coupling strength
(27)(=0.001, 0.01, 0.05, and 0.1, from topmost to lowest graph (=0.1, 0.5, 0.75, and 1.0, from topmost to lowest clirdéne val-
The values of the other parameters Are1, Ag=1.2,J=0.5, and ues of the other parameters ake=1, Ag=1.2, y/27=0.1, and
es=0. Approaches 1 and 4, solid line; Approach 2, dashed linees=1. Approach 1, solid line; Approach 2, dashed line; Approach
Approach 3, dash-dotted line. 3, dash-dotted line; Approach 4, dotted line.
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Eq. (17), where the energy shifts can be read off directly Furthermore, we have to obtain the equilibrium correlator

from theimaginary coefficients in the equation. of aB(t), which is needed as input for the master equation
describing the relaxation db alone (Approach 2, the nu-
IV. THE SIMPLE MASTER EQUATION: APPROACH 2 merical sampling of random procesgégproach 3 and the

As has been explained above, we will use the masteweak—coupllng approximatioApproach 4.

equation description not only for the action Bfonto the This is done by calculating the relaxation @f(t) under
combined systen$+ B [see Eq.(3)], but also for the action the action ofF, starting from the initial conditiorpg(0)

of F+B onto Salone. This constitutes the approximate Ap- =|7)g(T|g and applying the same formulas as ab¢with B
proach 2, involving the usual kind of master equation, whichinstead ofS), for the master equatiof8), adapted to the
is valid only for sufficiently weak coupling J, since it is two-dimensional Hilbert space & (with a 4x4 matrixC).
derived by applying both the Markoff and secular approxi-(o(t)o2(0)) undergoes damped oscillations. Its Fourier
mation[see Refs[14,15]]. In the unperturbed eigenbasis of transform

systems it reads

Ko w)= = 21
@)= T (02—4A%)2+ 402y 2

+5kj§k psil Al?2m(BB)g, g, (17)

. . 2 > N
Equation(17) describes the relaxation of the reduced den-ConS'St.S of broad peaks of width (for Y <447, which is
) A i proportional to the strength of the noise fofeand may be
sity matrlepg, of systemS alone, under the action of the comparable to the transition frequency Zself (see Fig. 2
couplingJoo? to the bathB+F. We have introduced the Thus,B indeed represents a noisy two-level fluctuator, which
abbreviationA= (}f_ acts onto S as a nonlinear (non-Gaussian and non-
Markoffian (colored bath.

Numerical resultsFirst the action of onto B is consid-
ered, to obtain the correlation functidBB),, . This result is

—/R(1\R _ 12/ 7B\ LB given in Eq.(21). It is used to set up the master equation
(B(1)B(0))=(B(1)B(0))=J%0;(t)0;(0)), describing the action oF +B onto S, Eq. (17). Its coeffi-
1 [+e cients define a 44 “ C matrix,” which is diagonalized. The
(BB),= Z_I dte“Y(B(t)B(0)). (18)  results are inserted into the appropriately modified &6),
)= in order to obtairkS(w).

Naturally, the behavior of Approach 2 is simplest to ana-
yze, since it is the textbook example of a master equation
applied to a single two-level system. Since the correlator
(BB),, is proportional toJ?, both the shift of the transition
frequency and the width of the peakincrease likel?, for
arbitrarily largeJ. In contrast, the dependence of the peak
width and the frequency shift on the noise strengtis non-
Tv=m2 |AwlXBB)e, €. monotonous. It is determined by the evolution( BB),, [see

" Eq. (21) and Fig. 4 with increasingy. For very smally, the
~ two-level fluctuatoB performs very weakly damped oscilla-
I'g=—27AuA;(BB)o, (19 tions at the frequency ®. Unless it is exactly at resonance
with the systenf the dissipative effects @& on the dynam-
ics of Swill be weak in that regime. The decay rate §f
(BB) which is given by the power spectrum & evaluated at
A=, |Akn|2f dw#. (200  2Ag, grows linearly iny [for y?<(A2—A%)%/AZ. The
" k™ En— @ transition frequency oS is shifted upwards or downwards,
P : epending on whether the main weight of the spectrurB of
. Here the indices ahd_ energles. ref_er to the un;.)eArturbelﬂS located below or abovés (A<A or A>Aq). For in-
e|get12tatesA gf the .0r|g|nal Hamiltonian & alone: Hs _ creasingy, B performs more strongly damped oscillations.
=eso; T Asoy . The integrals should be understood as prin-in the limit of large y, the spectrumBB), concentrates
cipal value integrals. . around zero frequendgee Fig. 2such that the decay rate of

The time-evolution opg is found from Eq.(17) using the S decreasesgain (like 1/y), after having gone through a
same approach as in Sec. lll, involving the diagonalization ofnaximum. The magnitude of the energy shift will also de-
a superoperatoC. In the present cas€ corresponds to the crease for increasing, simply because the contributions of
4 X4 matrix whose entries are read off from E#7). There-  the power spectrum d lying to either side of A 5 will tend
fore, the equation corresponding to E46) only contains to cancel each other. However, in the limit->o, the shift
pY, instead of the sum inside the brackets. always saturates at a positive value which is independent of

The Fourier transform of the correlator B Jof defines
the “bath spectrum”

It is real and symmetric in the limit of infinite temperature
considered here, and therefore it is equivalent to a classic
colored noise force. As will be explained belo¢BB),, is
found by applying the master equati¢®) to B alone. The
decay rates are defined by

and the energy shifts are given via

041111-5
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A. These facts can be read off from the analytical result for 20 T

Approach 2(written down in the special case e§=0): - J=0.1
S0} .
s 1 r N
OIS s D Y 4 :
J=0.3 E

Here the peak width is given by'=2J?9%e3(2Ag)
=2m(BB),a, the shifted transition frequency is,=2Ag
—2J323m3(2Ag), and we have definedS (w)=(2y
+iw)/(— 0’ +4A%+2iwy).

The simple master equation is expected to come close t( =
the true result, as long as the conditions of the Markoff and 510
secular approximation are fulfilled. This means the coupling
strengthd has to be so small that the resulting decaySof

. S
rium correlator K
=
I
1
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proceeds slowly compared with the transition frequency it- 15 2 25

self (secular approximatiorand with the correlation time of Frequency ®

the bath(Markoff approximation. The latter is given byrg ) s .

=1y if 72<4A2 and 7g=1/(y— m) if 72>4A2 FIG. 6. The Fourier-transforrk;(w) of the equilibrium cor-

relator of &f(t), for different values of the coupling strength

(=0.1, 0.3, and 0.5; from topmost to lowest curvEhe values of

the other parameters ae=1, Ag=1.2, y/27=0.001, andeg

=0. Approaches 1 and 4, solid line; Approach 2, dashed line; Ap-
Approach 3 consists in replacing the nonlinear bath by @roach 3, dash-dotted line.

linear one. If the two-level fluctuatdd were replaced by a

harmonic oscillatof16,17, this procedure of substituting a and sufficiently large length. The results displayed in the

linear bath with an appropriate correlation function for thefigures have been obtained using?1€amples and a fre-

combination ofF andB would be exact. Here, it is an ap- quency resolution of\w=27/800. The curves have been

proximation whose reliability we want to analyze by com- gqnthed by averaging over 5 to 20 adjacent frequency bins.

parison to the exact solution. In our case, the fact that the Since Approach 3 takes the full bath spectr(BB),, as
power spectrun{BB),,, given in Eq.(21), is rea! and sym-. input, this spectrum may also show up in the result for the
metric means thaB can be treated as a classical Gaussian s . .
.system correlatoK;(w), as is indeed the case. Figure 3
random process. Therefore, we have to solve a Langewg trates that this effect i h qf I
equation for the density matrix emonstrates that this effect is most pronounced for sma

values ofy, where the bath spectrum has a relatively sharp

V. THE NONLINEAR BATH REPLACED BY A LINEAR
BATH: APPROACH 3

AB)+\— T ~(B) structure[the noise fieldB(-) acting onS deviates strongly
ps”(U)="1lHswocr(t).ps” (D], @3 from white noisg. In these cases, the qualitative agreement
with the stochastic time-dependent Hamiltonian between Approach 3 and Approach("exact solution”) is
much better than that between Approack‘@mple master
HtocHt) = esoo+ Asos+B(t) o5, (24)  equation’) and Approach I(see also Fig. 6 Nevertheless,

there are deviations: In particular, there is no visible shift of

We calculate numerically the time-evolution @ (t) under ~ the peaks in Approach 3 with increasidgrhey just become
the action of the stochastic time-dependent Hamiltonian deider and asymmetricthis applies especially to the peak at
fined in Eq.(24), which depends oB(t). The description of frequency As). For higher values of, the linear bathAp-
open quantum systems by a stochastic Sdinger equation proach 3 in general shows less structure than the exact so-
has recently attracted increasing attentib5,18. lution, obtained for the actual nonlinear bath.

The density matrixp®(t) has to be averaged over a sta-
tistical sample of different field configuratior8(t). This
sample is produced by generating the Fourier coefficients of ~ VI. THE WEAK-COUPLING APPROXIMATION:

B as independent complex Gaussian random variables of ap- APPROACH 4
propriate variancégiven by the power spectrymThe field
B(t) itself is obtained using a Fast Fourier TransfdifffT). Instead of the Markoff approximation one can use a weak-
After averaging, we may use coupling approximatiofil5]. This keeps the full information
contained in the correlatdBB),,, at the price of introduc-
(P()P(0))=2(p&)(|th)s (25 ing a kernel for the master equation which is no longer local

in time. Let us shortly describe the derivation of the weak-
and Eqgs(10) and(12) in order to obtairKf‘z(w). To thisend, coupling equation. The von Neumann equation, iterated up to
the Fourier transform ops;4(|t|) is calculated numerically, second order, reads in the interaction picture with respect to
using a FFT on a time grid of sufficiently small step-sivte  Hy=H—V:

041111-6



NON-MARKOFFIAN EFFECTS OF A SIMPLE NONLINEAR BATH PHYSICAL REVIEW B6, 041111 (2002

. . . t . . . In general, we would expect the weak-coupling solution
pi(t)=—i[Vi(t),p,(0)]— JOdT[Vu(t).[V|(T),Pu(T)]]- to be a bit worse than the simulation of the linear bath with
(26) colored noise correlationApproach 3, since it is an ap-
proximation to the latter case. However, the result for the
The density matrix is replaced by an approximate factorizedgspecial cases=0 turns out to coincide completely with the
density matrix p,(t) = ps,(t)® pg(0), where the bath re- exact solution(Approach 1. The second peak shows up, in
mains described by a thermal equilibrium distribution. Thecontrast to the Markoff approximation. The solution fey

equation becomes =1 (or, more generallyes#0) is good for small system-
. bath couplingd. It fails for increasingd, where Approach 3
psi(t)=—itrg[Vi(1),ps(0)® pg(0)] seems to be the better approximation, providgds not too

I small (see discussion aboye
- fodrtrs[\“/.m,[\‘/.(r>,f)s.<r)®;33<0>]],
@27 VIl. CONCLUSIONS

. . We have discussed a simple model of a nonlinear bath,
where a trace over the bath, which also incluBebas been o . . )

] : . A T consisting of a single two-level system subject to a classical
taken. Now we introduce the interaction operafowhich is \ hite_noise force. Its action on another two-level system has
given byV=AB. In our caseB has zero mean and its cor- peen analyzed using four different approaches. Numerical
relator is symmetric, see E1). We get results for various special cases have been obtained and dis-

_ . cussed. The regimes where the different approaches work
Ps(t):—f drA (1),[A (t—7),ps(t— 7 ]KB(7)B(0)), well became clear: The standard Markoff approximation

0 gives good results as long as the coupling strength is so small

(28)  that the decay is slow compared to the transition frequency

L and the bath correlation time. However, if the bath spectrum

Going back to the Scfidinger picture and inserting=oy  displays sharp structures, their effects on the system’s cor-
then leads to the following weak-coupling equation, which isrelator are only retained in the weak-coupling equation with
second order ind: its memory kernel. As expected, both approaches fail in the

regime of large coupling between system and bath. In that
regime the linear bath may still provide a good approxima-
tion to the original nonlinear bath. Again, this applies in

o I particular when the bath spectrum has a strongly peaked

X[O’?,ps(t—T)]GIHSTKB(T)B(O». (29 structure. However, deviations between the linear and the
original nonlinear bath are clearly visible. Although we only

This equation is conveniently solved by using the Laplacediscussed the simplest example of a nonlinear bath, we ex-

transform. The Laplace transform of the equilibrium cor-pect the statements about the regimes where the different
relator of the battB is connected to the Fourier transform in approximations work to be valid also for more complicated

the usual way systems.

(BB) From the point of view of the computational effort, the

_ T qraest _[” w stochastic simulation used in Approach 3 is the most unfa-

CBB(S)_L dte <B(t)B(O)>_f_xdw St+iw vorable one, because the diffeFr):ntial equations have to be
integrated numerically many times to get the statistical aver-

) s+2y age. The master equation and the weak-coupling approxima-

=V (30 tion require the least effort, in particular because explicit
S?+2ys+4A? =~ : N p P
analytical expressions could be found for our model.

Using the Laplace transform, the system of differential equa- Ve plan to adress thigechnically more involvericase of

tions becomes a system of linear algebraic equations, whicfroitrary finite temperatures in the future. Further possible
can be solved by matrix inversion. All the results can be€Xtensions include an analysis of the higher-order terms in
obtained analytically. However, here we only present thdhe weak-coupling equation, as well as replacing the two-

comparatively brief expression for the special caseegf |€vel SystemB by a spin of larger magnitude, to observe the
—0: transition to the linear bath.

A A~ -~ t ~ -
ps<t)=—i[Hs,ps<t>]—fodr[af,e"HST

s+4Cgg(S)
s?+4sCgp(s) +4A3
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